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The production and re-production of sound scenes 
in the Ambisonic domain offers flexibility regar-
ding the loudspeaker placement around the lis-
tening area. Correct decoding should result in a 
spatial audio perspective that is independent of 
the loudspeaker configuration.
In case a modification of this perspective is nee-
ded, or directional alterations of the amplitude, 
applying such transformations in the Ambisonic 
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Figure 1: Cartesian and spherical co-
ordinate system.

Figure 2: 240 sampling points 
21-design allows order N=10.

Conclusion
A pragmatic approach for calculating Ambisonic 
transformation matrices has been presented. The-
se transformations can be used to attenuate or 
boost certain directions in Ambisonic recordings, 
to rotate, and to warp the spatial image in cer-
tain directions. The algorithms have been imple-
mented as ready-to-use audio plug-ins applicable 
to production and postproduction of Ambisonic 
recordings. Additionally the transformations can 
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domain is more challenging than directly changing 
the production or loudspeaker placement.
Nevertheless, for achieving flexibility during post-
production and playback, finding such algorithms 
in the Ambisonic domain is feasible. This poster 
shows a simple way to describe any Ambisonic 
transformation by performing all manipulations in 
the angular domain instead of the spherical har-
monics domain. For a practical implementation, 

be used to adapt Ambisonic recordings to certain 
playback situations. For all that, a new way of 
metering the Ambisonic surround production is 
required and was successfully presented.
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Abstract

Spatial audio productions for circular or spherical surround playback facilities often use Ambisonics because of the
smoothness it offers for panning and because of its classical and new main microphone array technology. In contrast
to channel-based standards in surround sound, Ambisonics ideally offers flexibility regarding the loudspeaker setup
around the listening area. Well-designed decoders should yield a spatial perspective that is largely independent of
this setup. With the increasing availability of microphones capable of recording higher order Ambisonics, various
transformations in the Ambisonic domain are desirable and necessary for enhancements during post production and
playback. Alteration of source positions or their loudness levels can easily be done by transformations applied in the
angular domain, of which a naive but impractical realisation would be to set up the playback loudspeakers differently
than those specified in the decoder. Fortunately, corresponding transformations can always be performed as matrix
operation in the Ambisonic signal domain, which, however, is currently not described well. In particular, such
alterations are only well-described for first-order Ambisonics, while we lack systematic descriptions for the higher
Ambisonic orders. This work presents ready-to-use implementations for the warping of the recording perspective and
directional loudness modification of higher-order Ambisonics. What is more, Ambisonic mastering has only been
done by ear in the past, wherefore this paper introduces a metering tool for monitoring the directional loudness levels
of Ambisonic recordings.

1. Introduction

Time and frequency independent spatial transformations of
Ambisonic recordings can be achieved by a simple matrix
multiplication of the Ambisonic signals. Finding suitable
transformation matrices for the post production of Ambisonic
recordings is the goal of this article. Based on the ”dominance
effect” proposed by Gerzon [1] for adjusting the front-back
balance Zotter and Pomberger [2][3] presented Warping of
Higher Order Ambisonics for correcting the surround image.
While deriving analytic expressions for the matrix coefficients
can be challenging a straight forward numerical approach
of finding the transformation matrix is mentioned in [3].
Ambisonic transformation matrices have also been studied by
Chapman and Cotterell [4], however their article concludes
with the erroneous speculation that the dominance transform
only exists for fist order Ambisonics. By contrast, there are
simple ways to describe any Ambisonic transformation.

This paper describes the simplest way to describe any Am-
bisonic transformation by performing all manipulation in the
angular domain instead of the spherical harmonics domain.
For a practical implementation, the Ambisonic signals are
sampled at sufficiently many discrete points in the angular
domain, where the location of the sampling points or their
values are manipulated. Re-expansion of the manipulated
angular samples back into the spherical harmonics domain
yields the Ambisonic transformation matrix.

The presented manipulations are implemented in the ambiX

audio plug-in suite [5] which can be downloaded at the
authors website1.
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2. Ambisonics
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Figure 1: Cartesian and spherical coordinate system
We define our coordinate system as following (cf. Fig. 1): the
x-axis points to the front, the y-axis to the left and the z-axis
to the top of the listener. Within Ambisonics we mostly deal
with spherical coordinates whereby ' is the azimuthal angle
in mathematical positive orientation (counter-clockwise)2 and
# being the elevation angle with 0� pointing to the equator and
+90� pointing to the north pole.

To denote the directional dependency of the surround signal
represented by Ambisonics, we will often need to convert
between a Cartesian unit direction vector
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and the azimuth and elevation angles (', #) of the spherical
coordinates

' = arctan
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2The user interface of the software differs from this angle convention and
uses a clockwise azimuth.
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Describing any manipulation
A surround audio signal        from the di-
rection

(1)

can be represented as 

(2)

with       being the spherical harmonics 
and      their expansion coefficients.
We want to find the matrix    which yields 
the transformed Ambisonic signals

(3)

Desirable transformations of the surround 
signal are (1) weighting by a direction-
dependent gain     and (2) angular trans-
formations       to modify the panorama

(4)

the Ambisonic signals are sampled at sufficiently 
many discrete points in the angular domain, where 
the location of the sampling points or the weigh-
ting is manipulated. Re-expansion of the mani-
pulated angular samples back into the spherical 
harmonics domain yields the Ambisonic transfor-
mation matrix.
The manipulations are ready to use and included 
in the ambix Ambisonic plug-in suite.
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Metering
To verify the described manipulations 
an Ambisonic metering tool was deve-
loped. The rms and peak level is mea-
sured at discrete points on the sphere.
A texture is generated using the rms 
levels and mapped back onto a sphere 
for 3D visualization. The peak values 
are indicated by balls that are distribu-
ted on the sphere (Fig. 7).
Additionally the Mollweide projection 
is used to create a two-dimensional re-
presentation of the directional Ambi-
sonic loudness levels.
Currently the visualization is imple-
mented in Pure Data. It is feasible to 

Directional loudness modification
Modifying the loudness of specific direc-
tions is especially useful for post produc-
tion of microphone array recordings.
To perform loudness modifications in the 
angular domain, we consider a cap function 
to crop out a part of the surround sound 
scene (Fig. 3). For this purpose, we use 
Eq.8 with a neutral angular transformation 
           and a gain function

(9)

Using (2) and (4) yields

(5)

and we use orthogonality
to remove 

(6)

We recognize this integral as spherical harmo-
nics transform                                 which 
we can perform as discreet spherical harmonics 
transform using a suitable distribution of    di-
rections

(7)

   is constant as long as the angular transforma-
tion       and the weighting function      are not 

changing. Angle-distortion or directional-
loudness-weighting requires the manipula-
ted Ambisonic signal to be of higher order 
which can be found in [1, Tab 1].

Efficient evaluation of T by t-designs
The number of sampling points must be 
a t  l e a s t               . For a transform of 
the Ambisonic order N, we would need a 
spherical t-design of       . Hardin and 
Sloan [2] provided coordinates     for vari-
ous t-designs. A more recent collection of 
t-designs up to degree 1000 was provided 
by Gräf and Potts [3].
The 21-design with 240 points [Fig. 2] al-
lows the use up to Ambisonic order          , 
and it allows a         without any pseudo-
inversion:
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Figure 3: Spherical cap with center    , size   ,  gain factor      
    inside the cap and     outside the cap.

Warping the surround image
Warping is used to stretch a certain regi-
on of the surround image while squeezing 
it in other regions to prevent overlap. We 
are using an angular transformation       to 
warp the elevation angle (Fig. 5).
Warping with regard to other directions are 
accessible through pre- and post rotation.
As example we outline warping towards the nor-
thpole (Fig. 4a, Gerzon‘s dominance effect):

(10)

An enlarged virtual source of constant am-
plitude activates more loudspeakers. To 
prevent the hereby invoked loudness incre-
ase, we use the de-emphasis

(11)

to attenuate enlarged regions.

Figure 5: Warping scheme, thin lines indicates un-
modified surround image, warping towards the north-
pole and warping away from the equator.

Figure 4: Warping of the elevation

(a) towards north pole

(b) away from equator and 
towards equator
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Figure 4: Rotation around x, y and z-axis.

harmonic domain we can perform the rotation in the angular
domain. The rotation of the unit Cartesian direction vector ✓
around the x axis (φ, roll), y axis (✓, pitch) and z axis ( , yaw)
is done by multiplication with the rotation matrix R(φ, ✓,  )

✓̃ = T {✓} = R(φ, ✓,  ) ✓, (22)

where
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The inverse transformation required to obtain T with Eq. (19)
just uses the transposed matrix T �1{·} = RT(φ, ✓,  ) · {}
and a neutral weight g(✓) = 1. Rotation does not increase the
Ambisonic order.

3.4. Warping

Warping is used to stretch a certain region of the surround im-
age while squeezing it in other regions to prevent overlap. In
this paper we describe the warping operation for the elevation
angle # to #̃. Warping along any other direction can be done
by pre- and post-rotation. Zotter and Pomberger [3] mention
the necessity for a magnitude emphasis as correction for the
enlargement of sources after applying warping. Therefore,
other than rotation and directional loudness manipulation, non
of both modifiers g(✓) and T {·} will be neutral in Eq. (19).

We are using a substitution to simplify subsequent warping
curves, cf. [3], in order to express the manipulation of the
angle # in Eq. (2),

µ = sin(#), original, (24)

µ̃ = sin(#̃), warped,

and we restrict ourselves to monotonically rising warping
curves @µ̃

@µ ≥ 0 that map µ of the interval [−1, 1] to µ̃

covering the interval [−1, 1]. To apply this manipulation on
✓, the determination and modification of its angles ' and # as
defined in Eqs. (1) and (5) are required.

Warping to elevate or lower equator. As proposed by
Gerzon and in [2], a bilinear transform provides a useful
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(a) towards north pole and
south pole, arrow indicates the
shift of the equator arcsin↵
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(b) away from equator (β > 0)
and towards equator (β < 0)

Figure 5: Warping of the elevation angle

warping transformation between µ and µ̃

µ̃ =
µ+ ↵

1 + ↵µ
. (25)

The operation is neutral for ↵ = 0, and depending on the sign
of ↵, it elevates or lowers the equator # = 0 of the original
surround image to #̃ = arcsin↵ for any ↵ between −1 
↵  1 (Fig. 5(a)). To preserve the total loudness of sounds
within the stretched and squeezed parts of the surround sound

images, the gain weight g =
q

@µ̃
@µ needs to be applied after

warping as post-emphasis, cf. [3],

g(µ) =

p
1− ↵2

1 + ↵µ
. (26)

Warping towards and away from equator. The following
equation is another useful warping curve preserving the ele-
vation of the equator. It is neutral for β = 0, pushes surround
sound content away from the equator to the poles for β > 0,
or pulls it towards the equator β < 0 (Fig. 5(b)),
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The gain post-emphasis g =
q
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The exponent denotes that for negative β post-emphasis uses
the reciprocal value of the expression in brackets.

Figure 6: Warping scheme, thin lines indicates unmodified surround
image, warping towards the northpole ↵ = 0.4 and warping away
from equator β = 0.4
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Figure 7: Ambisonic metering by sampling the surround scene, 
measuring audio levels and interpolating the measurement 
points with spherical harmonics to generate the texture.

transfer all computations to the GPU which is 
usually not busy with audio applications.

Figure 6: Rotation around xyz-axis

Rotation
While rotations of spherical harmonics 
around the z-axis are fairly easy to imple-
ment, the rotation around the x- and y-axis 
is mathematically more demanding. 
To maintain mathematical simplicity we can 
perform the rotation of the spherical har-
monics in the angular domain using Eq. 8 
with the angular transformation
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