Räumliche Transformationen zur
Veränderung von ambisonischen Aufnahmen

Matthias Kronlachner

Motivation

Warum in der Ambisonics-Domäne?

- Objektbasierte Formate einfach: Metadaten verändern

- Aber: nicht immer alle Objekte einzeln verfügbar / Trennung mit Artefakten?

- Allgemeine Transformation
- Rotation
- Warping
+ Richtungsabhängige Lautstärke
Enkodierte Quellen
Transformationen

Mikrofonarray
Aufnahmen

- Punktanordnungen: \boldsymbol{t}-designs
- Plug-ins

Transformation durch Symmetrie

 (Erinnerung an MS Aufnahmetechnik..)Vorzeichennegation für Signale mit $\mathrm{m}<0$ resultiert in Spiegelung um die y-Achse

Vektornotation

$$
\begin{gathered}
f(\varphi, \vartheta, t)=\sum_{n=0}^{\mathrm{N}} \sum_{m=-n}^{n} Y_{n}^{m}(\varphi, \vartheta) \phi_{n m}(t) \\
f(\boldsymbol{\theta}, t)=\boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{\phi}_{\mathrm{N}}(t) \\
\boldsymbol{y}_{\mathrm{N}}(\boldsymbol{\theta})=\left(\begin{array}{c}
Y_{0}(\boldsymbol{\theta}) \\
Y_{1}(\boldsymbol{\theta}) \\
Y_{2}(\boldsymbol{\theta}) \\
Y_{3}(\boldsymbol{\theta}) \\
Y_{4}(\boldsymbol{\theta}) \\
\vdots \\
Y_{(\mathrm{N}+1)^{2}-1}(\boldsymbol{\theta})
\end{array}\right)=\left(\begin{array}{c}
Y_{0}^{0}(\boldsymbol{\theta}) \\
Y_{1}^{-1}(\boldsymbol{\theta}) \\
Y_{1}^{0}(\boldsymbol{\theta}) \\
Y_{1}^{1}(\boldsymbol{\theta}) \\
Y_{2}^{-2}(\boldsymbol{\theta}) \\
\vdots \\
Y_{\mathrm{N}}^{\mathrm{M}}(\boldsymbol{\theta})
\end{array}\right) \\
\text { Ambisonic Channel Numbering (ACN) }
\end{gathered}
$$

Spherical Harmonic Transform

$$
\mathcal{S H} \mathcal{T}\{f(\boldsymbol{\theta})\}=\boldsymbol{\phi}_{\mathrm{N}}=\int_{\mathbb{S}^{2}} \boldsymbol{y}_{\mathrm{N}}(\boldsymbol{\theta}) f(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}
$$

Geeignete Wahl

$$
\boldsymbol{\Theta}=\left[\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{\mathrm{L}}\right]^{T}
$$

von Abtastpunkten

$$
\mathcal{D S H} \mathcal{T}\{\boldsymbol{f}(\boldsymbol{\Theta})\}=\boldsymbol{\phi}_{\mathrm{N}}=\boldsymbol{Y}_{\mathrm{N}}^{\dagger}(\boldsymbol{\Theta}) \boldsymbol{f}(\boldsymbol{\Theta}),
$$

$$
\boldsymbol{Y}_{\mathrm{N}}(\boldsymbol{\Theta})=\left(\begin{array}{c}
\boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}\left(\boldsymbol{\theta}_{1}\right) \\
\boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}\left(\boldsymbol{\theta}_{2}\right) \\
\vdots \\
\boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}\left(\boldsymbol{\theta}_{\mathrm{L}}\right)
\end{array}\right)=\left(\begin{array}{ccccc}
Y_{0}\left(\boldsymbol{\theta}_{1}\right) & Y_{1}\left(\boldsymbol{\theta}_{1}\right) & Y_{2}\left(\boldsymbol{\theta}_{1}\right) & \cdots & Y_{(\mathrm{N}+1)^{2}-1}\left(\boldsymbol{\theta}_{1}\right) \\
Y_{0}\left(\boldsymbol{\theta}_{2}\right) & Y_{1}\left(\boldsymbol{\theta}_{2}\right) & Y_{2}\left(\boldsymbol{\theta}_{2}\right) & \cdots & Y_{(\mathrm{N}+1)^{2}-1}\left(\boldsymbol{\theta}_{2}\right) \\
& & \cdots & & \\
Y_{0}\left(\boldsymbol{\theta}_{\mathrm{L}}\right) & Y_{1}\left(\boldsymbol{\theta}_{\mathrm{L}}\right) & Y_{2}\left(\boldsymbol{\theta}_{\mathrm{L}}\right) & \cdots & Y_{(\mathrm{N}+1)^{2}-1}\left(\boldsymbol{\theta}_{\mathrm{L}}\right) .
\end{array}\right)
$$

Allgemeine Transformationsvorschrift

1) Richtungen unterschiedlich gewichten $\quad g(\boldsymbol{\theta})$
2) Richtungen neu zuweisen
$\tilde{\boldsymbol{\theta}}=\mathcal{T}\{\boldsymbol{\theta}\}$

$$
\tilde{f}(\mathcal{T}\{\boldsymbol{\theta}\}, t)=g(\boldsymbol{\theta}) f(\boldsymbol{\theta}, t)
$$

inverse Abbildung $\tilde{f}(\boldsymbol{\theta}, t)=g\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right) f\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}, t\right)$

Allgemeine Transformationsvorschrift

Transformiertes Signal $\tilde{f}(\boldsymbol{\theta}, t)=g\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right) f\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}, t\right)$

$$
f(\boldsymbol{\theta}, t)=\boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}(\boldsymbol{\theta}) \boldsymbol{\phi}_{\mathrm{N}}(t)
$$

Orthogonalität $\left.\quad \boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}(\boldsymbol{\theta}) \tilde{\phi}_{\mathrm{N}}(t)=g\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right) \boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}} \mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right) \boldsymbol{\phi}_{\mathrm{N}}(t)$
$\int_{s_{s^{2}}} y_{\mathbb{N}}(\boldsymbol{\theta}) \boldsymbol{y}_{\mathbb{N}}^{\mathrm{T}}(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}=I \longrightarrow \tilde{\phi}_{\mathrm{N}}(t)=\underbrace{\int_{\mathrm{s}^{2}} \boldsymbol{y}_{\mathbb{N}}(\boldsymbol{\theta}) g\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right) \boldsymbol{y}_{\mathbb{N}}^{\mathrm{T}}\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right) \mathrm{d} \boldsymbol{\theta}}_{:=T} \phi_{\mathrm{N}}(t)$
-> Erkennen SHT $\quad \boldsymbol{T}=\boldsymbol{\mathcal { S H }} \boldsymbol{\mathcal { T }}\left\{g\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right) \boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}\left(\mathcal{T}^{-1}\{\boldsymbol{\theta}\}\right)\right\}$
und verwenden DSHT

$$
\begin{aligned}
\boldsymbol{T} & =\mathcal{D S H} \mathcal{T}\left\{\operatorname{diag}\left\{\boldsymbol{g}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)\right\} \boldsymbol{Y}_{\mathrm{N}}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)\right\} \\
& =\boldsymbol{Y}_{\tilde{\mathrm{N}}}^{\dagger}(\boldsymbol{\Theta}) \operatorname{diag}\left\{\boldsymbol{g}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)\right\} \boldsymbol{Y}_{\mathrm{N}}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)
\end{aligned}
$$

Transformationsvorschrift mit \boldsymbol{t}-designs

$$
\begin{aligned}
\boldsymbol{T} & =\mathcal{D S H} \mathcal{T}\left\{\operatorname{diag}\left\{\boldsymbol{g}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)\right\} \boldsymbol{Y}_{\mathrm{N}}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)\right\} \\
& =\boldsymbol{Y}_{\tilde{\mathrm{N}}}^{\dagger}(\boldsymbol{\Theta}) \operatorname{diag}\left\{\boldsymbol{g}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)\right\} \boldsymbol{Y}_{\mathrm{N}}\left(\mathcal{T}^{-1}\{\boldsymbol{\Theta}\}\right)
\end{aligned}
$$

mit t-design keine Pseudoinversion notwendig $t \geq 2 \mathrm{~N}$

$$
\boldsymbol{T}=\operatorname{diag}\left\{\frac{4 \pi}{\mathrm{~L}}\right\} \boldsymbol{Y}_{\tilde{\mathrm{N}}}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{t}\right) \operatorname{diag}\left\{\boldsymbol{g}\left(\mathcal{T}^{-1}\left\{\boldsymbol{\Theta}_{t}\right\}\right)\right\} \boldsymbol{Y}_{\mathrm{N}}\left(\mathcal{T}^{-1}\left\{\boldsymbol{\Theta}_{t}\right\}\right)
$$

ohne inverse Abbildung müssten wir für jede Parameteränderung die Pseudoinverse berechnen...

Transformationen erhöhen möglicherweise $\mathrm{N}->\mathrm{N}$

Anwendungen der allgemeinen Transformationsvorschrift

$$
\tilde{\boldsymbol{\theta}}=\mathcal{T}\{\boldsymbol{\theta}\}=\mathbf{R}(\phi, \theta, \psi) \boldsymbol{\theta}
$$

$$
\begin{aligned}
& \mathbf{R}(\phi, \theta, \psi)=\underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right)}_{\mathbf{x}-\text { axis-rotation(roll) }} \cdot \underbrace{\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)}_{\mathbf{y}-\text {-axis-rotation(pitch) }} \cdot \underbrace{\left(\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)}_{\mathbf{z} \text {-axis-rotation(yaw) }} \\
& \boldsymbol{T}_{r}^{x y z}=\operatorname{diag}\left\{\frac{4 \pi}{\mathrm{~L}}\right\} \boldsymbol{Y}_{\mathrm{N}}^{\mathrm{T}}\left(\boldsymbol{\Theta}_{t}\right) \boldsymbol{Y}_{\mathrm{N}}\left(\boldsymbol{R}^{\mathrm{T}}(\phi, \theta, \psi) \boldsymbol{\Theta}_{t}\right)
\end{aligned}
$$

Rotation

$$
\begin{aligned}
\tilde{\boldsymbol{\theta}}=\mathcal{T}\{\boldsymbol{\theta}\} & =\mathbf{R}(\phi, \theta, \psi) \boldsymbol{\theta} \\
g(\boldsymbol{\theta}) & =1
\end{aligned}
$$

(a) x-axis $\phi=25^{\circ}$.

(b) y-axis $\theta=25^{\circ}$.

(c) z-axis $\psi=25^{\circ}$.

Besetzung der Transformationsmatrix,
Komponenten jeder SH Ordnung n werden gemischt, verlassen diese aber nicht!

Warping

- Lautstärkenkompensation notwendig

Warping

Richtung Pol $\quad \alpha=0.4 \quad \mathrm{~N}=3$

(a) $\vartheta=45^{\circ}$.
90°

0dB
(c) $\vartheta=-45^{\circ}$.

(b) $\vartheta=0^{\circ}$.
90°
45°

(d) $\vartheta=-90^{\circ}$.
schwarz: Originalsignal, rot: ohne Lautstärkenkompensation blau: mit Lautstärkenkompensation

(a) Without loudness compensation.

(b) With loudness compensation.

Richtungsabhängige Lautstärkenanpassung

- Kugelkappenfunktion mit Zentrum $\boldsymbol{\theta}_{\mathrm{c}}$, Größe $\frac{\gamma_{\mathrm{c}}}{2}$
- Lautstärkefaktor g_{1} für Punkte innerhalb der Kappe, g_{2} außerhalb, neutrale Winkelabbildung $\mathcal{T}\{\boldsymbol{\theta}\}=\boldsymbol{\theta}$

Richtungsabhängige Lautstärkenanpassung

$$
\mathrm{N}=3
$$

$$
\begin{aligned}
\boldsymbol{\theta}_{C} & =\left(0^{\circ}, 0^{\circ}\right) \\
\gamma & =40^{\circ} \\
g_{1} & =6 \mathrm{~dB}, g_{2}=-6 \mathrm{~dB}
\end{aligned}
$$

(c) $\tilde{\mathrm{N}}=7$.

(b) $\tilde{\mathrm{N}}=5$.

90°

Transformationsmatrix
Nachteil: benötigt höhere Ordnungen!

Besser: Spherical Slepian Functions

Teilmenge der Kugelfläche $\quad S^{2} \subset \mathbb{S}^{2}$
Orthogonalität geht verloren $\int_{S^{2}} \boldsymbol{y}_{\mathrm{N}}(\boldsymbol{\theta}) \boldsymbol{y}_{\mathrm{N}}^{\mathrm{T}}(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}=\boldsymbol{G}$
$\boldsymbol{g}(\boldsymbol{\theta})$ - Kappenfunktion $\quad \boldsymbol{G}=\int_{\mathbb{S}^{2}} \boldsymbol{y}_{\bar{N}}(\boldsymbol{\theta}) \operatorname{diag}\{\boldsymbol{g}(\boldsymbol{\theta})\} \boldsymbol{y}_{\mathbb{N}}^{\mathrm{T}}(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}$

Singularwertzerlegung

$$
\boldsymbol{G}=\boldsymbol{U} \operatorname{diag}\left\{\left[\sigma_{\sigma}\right]_{1 \ldots(\mathrm{~N}+1)^{2}}\right\} \boldsymbol{V}^{\mathrm{T}}
$$

Ersetzen der

$$
\boldsymbol{T}=\boldsymbol{U} \operatorname{diag}\left\{\left[\Gamma_{i}\right]_{1 \ldots(\mathrm{~N}+1)^{2}}\right\} \boldsymbol{V}^{\mathrm{T}}
$$

Singularwerte

$$
\varsigma_{i}=g_{1} u\left(\sigma_{i}-\alpha \sigma_{1}\right)+g_{2} u\left(\alpha \sigma_{1}-\sigma_{i}\right) \quad 0<\alpha<1
$$

Vorteil: Ordnungen strikt begrenzt!

Besser: Spherical Slepian Functions

$$
\mathrm{N}=\tilde{\mathrm{N}}=5 \quad \alpha=0.5 \quad \boldsymbol{\theta}_{C}=\left(0^{\circ}, 0^{\circ}\right) \quad g_{1}=0 \mathrm{~dB}, g_{2}=-6 \mathrm{~dB}
$$

$\gamma=40^{\circ}$

(a)
(d)

(b)

(e)

(c)

(f)
$\gamma=135^{\circ}$

Andere Transformationskurven

Philips Pavilion, Le Corbusier und Iannis Xenakis,
Weltausstellung 1958 in Brüssel
[wikimedia commons/Wouter Hagens]
Azimuth abhängiges Warping
$\mu=\cos \vartheta$,
$\alpha=0.8 \sin 2 \phi$,
$\tilde{\mu}=\frac{\alpha+\mu}{1+\mu \alpha}$,
$\tilde{\vartheta}=\arccos \tilde{\mu}$.

Andere Transformationskurven

(a) Distortion scheme, lines indicate original elevation levels.
(c) Original surround signal.

(b) Sparsity of \boldsymbol{T}, truncated at $\tilde{\mathrm{N}}=7$.

(d) Modified surround signal.

t-designs durch nichtlineare Optimierung finden

Mögliche Kostenfunktion für t-designs

1. Kondition von \mathbf{Y}

$$
\epsilon_{C}(\boldsymbol{\Theta})=\kappa\left(\boldsymbol{Y}_{\mathrm{N}}(\boldsymbol{\Theta})\right)-1
$$

2. Frobenius-Norm

$$
\|\boldsymbol{A}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}
$$

3. Sloan \& Womersley

$$
\epsilon_{S W}(\boldsymbol{\Theta})=\frac{1}{\mathrm{~L}^{2}} \sum_{n=1}^{t} \sum_{m=-n}^{n}\left|\sum_{l=1}^{\mathrm{L}} Y_{n}^{m}\left(\boldsymbol{\theta}_{l}\right)\right|^{2}
$$

Mögliche Kostenfunktion für \boldsymbol{t}-designs

- Starte mit bekanntem t-design $\Theta_{t} \quad$ [1]
- Hinzufügen von Rauschen v

$$
\bar{\nu}=\frac{1}{\mathrm{~L}} \sum_{l=1}^{\mathrm{L}} \arccos \boldsymbol{\theta}_{\boldsymbol{t}}^{\mathrm{T}} \boldsymbol{\theta}_{\nu}
$$

[1] R. Hardin and N. Sloane, "McLaren's Improved Snub Cube and Other New Spherical Designs in Three Dimensions," in Discrete Computational Geometry, vol. 15, pp. 429-441, 1996.

So finde ich t-designs...

- Zufällige Startkonfiguration $t=10, \mathrm{~L}=90$
- Nach 24m36s...

$$
\begin{aligned}
& \left|\epsilon_{C W}\right|<10^{-11} \\
& \kappa(\boldsymbol{Y}(\boldsymbol{\Theta}))=1.000008
\end{aligned}
$$

t-designs mit vielen Knoten?

All-Round Ambisonic Decoding

für den ZKM-Kubus mit 43 Lautsprecher

21-design mit $L=240$

100-design mit $\mathrm{L}=5200$ [1]
[1] M. Gräf and D. Potts, "On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms,' in Numerische Mathematik Vol. 119 No. 4, p. 699-724, 2011.

Implementierungen als Plug-ins

- JUCE C++ Bibliothek - Plug-in Infrastruktur, GUI
- Eigen C++ Bibliothek für lineare Algebra
- andere Bibliotheken für Samplerate-Conversion, FFT, OSC
- Open Source, getestet unter Windows, MacOS, (Linux)
- Anforderung an Host: flexible Busstruktur -> Reaper/Ardour

Implementierungen als Plug-ins

Visualisierung von Ambisonics-Signalen

Visualisierung der Richtungslautstärke: Pure Data Prototyp

Dekodierung für Kopfhörerwiedergabe

Dekodierung auf virtuelle Lautsprecher, Faltung der Lautsprechersignale mit Binauralen Raumimpulsantworten (BRIRs)

Optimierung durch kürzere Faltungen

Headtracking mit Arduino [1] und 3-Achsen Beschleunigungssensor, Gyrometer und Magnetometer zur Drift-Kompensation
[1] D. Frie, "open-headtracker,"
http://code.google.com/p/open-headtracker, 2012.

Astronomisches Observatorium der Vilnius Universität, 2013

EU-ICT Messe Vilnius, 2013.

Mobile IEM Ambisonics Kuppel, EAA Symposium Berlin, 2014.

Studienzentrum für Musikinnovation,
Litauische Musik und Theater Akademie, Vilnius, 2014

Zusammenfassung

- Allgemeine Transformationsvorschrift für Ambisonics
- Anwendung für Rotation, richtungsabhängige Lautstärkeanpassungen, Warping, Kreatives...
- Vorteile mit Slepian Functions für Lautstärkeanpassungen
- Suche nach t-designs durch nichtlineare Optimierung
- Plug-in Implementierungen

> Fragen?

Danke.

Matthias Kronlachner

