
THE KINECT SENSOR AS HUMAN-MACHINE-INTERFACE IN
AUDIO-VISUAL ART PROJECTS

Matthias Kronlachner

Student, University of Music and Dramatic Arts
Graz, Austria

mail@matthiaskronlachner.com

IOhannes m zmölnig

Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts

Graz, Austria
zmoelnig@iem.at

ABSTRACT

For several years now, the entertainment and gaming
industry has been providing multifunctional and cheap hu-
man interface devices which can be used for artistic appli-
cations.

Since November 2010 a sensor called KinectTMfor Mi-
crosoft’s Xbox 360 is available. This input device is used
as color camera, microphone array, and provides - as an
industry-first - a depth image camera at an affordable price.
Soon after the release of the Xbox-only device, program-
mers from all over the world provided solutions to access
the data from a multitude of operating systems running on
ordinary computers.

This paper presents operating system independent ways
to access and interpret Kinect data streams within Pure
Data/Gem1 and possible applications for interactive audio
and visual art projects.

KEYWORDS

pure data, kinect, depth sensor, human computer interface,
motion capturing, interaction

1. INTRODUCTION

Based on a project work[4] multiple Pure Data/Gem ex-
ternals2 and application examples are introduced which
allow the full access to the functionality of the Kinect sen-
sor including video and audio streams .

So far no special colorspace is existent in Gem that de-
scribes the distance of every pixel in relation to the cam-
era. Therefore, possible solutions are presented to inter-
pret and work with the depth pixel data.

By integrating a framework for ”natural interaction”
(OpenNI), it is possible to do user identification or extract
skeletal models from the depth image.

1Pure Data is a visual programming environment used for computer-
music and interactive multimedia applications. Gem stands for Graph-
ics Environment for Multimedia and extends Pure Data to do realtime
OpenGL based visualizations.

2Externals provide additional object classes to extend the functional-
ity of Pure Data.

Other solutions exist to acquire skeleton data, for ex-
ample OSCeleton3. However, the presented externals en-
able the access to video streams and tracking data simul-
taneously inside Pure Data without the need of additional
computer programs. This allows maximum flexibility.

The documentation of the externals include usage ex-
amples like distance measurement, outline extraction, back-
ground subtraction, hand, user and skeleton tracking, head
pose estimation as well as gathering audio streams from
the 4 channel microphone array.

For showing the practical application in art projects,
the piece übersetzen - vertimas[3] for dancer, sound and
video projection as well as the usage for a concert with
the IEM Computer Music Ensemble is presented.

The advantage of using Kinect for projects include
independence from visible light due to operation in the
infrared spectrum and no need for calibration to gather
movement data of people.

Figure 1. Pure Data/Gem screenshot showing RGB
stream, raw depth stream and color gradient mapping of
the depth stream

3OSCeleton is a standalone application to gather skeleton data from
OpenNI/NITE framework and sends it over Open Sound Control (OSC)
to a host.

mailto:mail@matthiaskronlachner.com
mailto:zmoelnig@iem.at

Figure 2. Depth sensor field of view 58◦ H, 45◦ V, 70◦ D

2. KINECT SPECIFICATIONS

The Kinect sensor includes an RGB camera with a stan-
dard resolution of 640x480 at 30 Hz framerate (max. 1280
x1024 @ 15 Hz), a depth image sensor and a four chan-
nel microphone array running with 16 bit resolution and
16 kHz sampling rate. It’s head can be tilted ±27◦, a
three axis accelerometer is measuring the orientation and
a three color LED can be used for visual feedback.

The depth sensor consists of an infrared laser project-
ing a specific dot pattern onto it’s field of view. An in-
frared camera records these patterns on the objects and an
on-board DSP computes the distance by correlating the
live image with stored reference patterns. Using multiple
Kinect devices onto the same scene can cause unrecog-
nized regions in the depth image by overlapping patterns.
A possible solution by adding independent motion to each
of the sensors is proposed in [Mai2012][5].

The output of the depth sensor is a 640x480 pixel video
stream, each pixel holding 11 bit of depth information.

3. ACCESSING DATA STREAMS

Several software libraries exist to allow programmers in-
terface with the Kinect sensor.

3.1. libfreenect

The OpenKinect community released the multi-platform
open source library libfreenect, allowing access to all data
streams of the Kinect. No higher level functions are in-
cluded but there is a separate open source project focusing
on skeletal tracking (Skeltrack[6]).

3.2. OpenNI/NITE

The Israeli company Primesense which developed the tech-
nology for Kinect, founded the non-profit organization
OpenNI to support the interoperability of Natural Inter-
action devices. OpenNI is an cross-platform open source
framework allowing applications to interface with differ-
ent sensor devices and accessing higher level functions
(middelware) like skeleton tracking. The built-in function
for recording and playing back data streams of an attached

sensor device is handy for rehearsal and development sit-
uations.

NITE is the closed source middleware from Prime-
sense and provides gathering of the position of numer-
ous standing people, tracking of a detailed skeleton of two
people as well as performing hand tracking.

3.3. Microsoft Kinect SDK

In June 2011 Microsoft released their Kinect Software De-
velopment Kit (SDK). This Windows only SDK allows
position estimation of up to six standing people and ex-
tracting the detailed skeleton of two people. It features
higher level functions for the microphone array like sound
source localization, beam forming and speech recogni-
tion.

4. PD EXTERNALS

4.1. Representation of depth data

So far no Gem colorspace exists which describes the dis-
tance of a pixel in relation to the camera. Therefore a
solution is proposed using RGBA or YUV colorspace for
representing 16 bit depth data. For RGBA output the 16
bit depth data is divided into the upper eight most signif-
icant bits and the lower eight significant bits. These eight
bit values are stored in the red (R) and green (G) channel.
The blue channel (B) is used for additional information
about the pixel. For example, if a user is present in that
specific pixel, the specific user-id is set. The alpha chan-
nel (A) is set to 255. YUV colorspace uses 4 bytes per
2 pixels and therefore can store the 16 bit per pixel depth
information, but additional values like user-ids can not be
included.

R G B A
3/8 msb 8 lsb 0 or userid (OpenNI) 255

Table 1. RGBA output of depth data

YUV422 (2 bytes per pixel)
11 bit/16bit depth values

Table 2. YUV output of depth data

Depending on the numerical representation of color
values, depth information can be obtained with the fol-
lowing formulas4.

distance = Rint ∗28 +Gint (1)

distance = R f loat ∗216 +G f loat ∗28 (2)

4Gem internally handles color values as 8 bit integers (0-255), but on
user level normalized floats (0.0-1.0) are used.

For development and visualization purposes it is handy
to map distance values onto a color gradient using pix -
depth2rgba.

Figure 3. Gradient for displaying depth data - near to far

4.2. pix freenect

The external pix freenect[2] is based on libfreenect
and offers access to RGB and depth streams (Fig. 1). It
allows gathering of accelerometer data, controling the tilt
of the head and changing the LED color. Multiple devices
can be accessed by their unique serial number. Due to the
limited bandwidth of USB 2.0 a maximum number of two
Kinects can be accessed by one USB controller.

The message depth mode gives the possibility to
choose between output of a depth value in [mm], an RGB-
aligned [mm] output and the raw 11 bit data from the depth
sensor.

4.3. pix openni

Based on OpenNI and NITE middleware by Primesense,
the external pix openni[2] features some higher level
functionality. Besides gathering the RGB and depth streams
it is possible to do hand tracking, user tracking and skele-
ton tracking (Fig. 4). Currently it is not possible to get
accelerometer data, control the tilt and the color of the
LED as well as receiving the audio streams. Therefore
the libfreenect based externals freenect[2] and the cur-
rently Linux only freenect audio[2] have been de-
veloped to be used simultaneously with pix openni and
provide the missing features.

5. APPLICATION EXAMPLES

5.1. General application examples

The following application examples for Pure Data/Gem
are available on Github[2].

5.1.1. Distance measurement

By using pix data the color of a specific pixel can be
extracted. Using the formulas described in 4.1 it is possi-
ble to convert RGBA color data back into a distance value.

5.1.2. Background subtraction

By defining three dimensional high and low level thresh-
olds, a cuboid of the depth map can be extracted. Compu-
tation can either be done with the help of pix thresh-
old depth[2] (calculation done on CPU) or with OpenGL
shaders (calculation done on GPU). Overlaying the ob-
tained stencil with the aligned RGB image results in mask-
ing unwanted regions.

Figure 4. Skeleton tracking with pix openni

5.1.3. User tracking

Two different approaches for tracking a user are included
in the examples. The general approach would be to use the
processed depth map of section 5.1.2 and get the position
and size of the remaining objects (blobs) in the depth map
by using pix multiblob.

pix openni gives access to higher level scene anal-
ysis algorithms provided by the NITE middleware. It can
output the center of mass of numerous standing people.
As described in section 4.1 the B channel of the RGBA
depth-map is used to store a user-id depending on the pres-
ence of a user in the specific pixel. User-ids are assigned
sequentially starting at one. After ten seconds of absence
the user-id is freed and can be reused if a new user appears
in the field of view. Filtering the depth map according to
the B channel is an easy way to extract the outline of all
people in the field of view.

5.1.4. Skeleton/hand tracking

Once the NITE algorithm detected a user it can start track-
ing a detailed skeleton for two users without the need of
a calibration pose. The tracking data consists of three-
dimensional coordinates for each of the 15 joints (Fig.
4). NITE also supports the tracking of multiple hands.
After making a waving gesture it starts to output three-
dimensional coordinates of the hand.

Due to the frame rate of the depth sensor the maxi-
mum output rate of the tracking data is limited to 30 Hz.

Kinect and
Video Server

Instrument/
Audio Server

Audience & stage
Graz

OSC

Audience
Camera

RGB+depth

2 musician playing
with one Kinect

GÉANT
ACOnet, LITNET

screen

4 speakers
1st order

Ambisonics

tracking data

Internet

to/from Graz

Figure 5. ICE network concert - stage setup Vilnius

All tracking data is represented in [mm] real-world coor-
dinates with their origin being at the infrared camera.

5.1.5. Head pose estimation

Based on a paper and software by Gabriele Fanelli[1] the
external pix head pose estimation[2] has been de-
veloped which takes the depth map of the Kinect as input
and estimates the Euler angles and position of multiple
heads detected in the depth map. The estimator works
with a reference database and covers a range of about
±75◦ yaw and ±60◦ pitch.

5.2. ICE - IEM Computermusic Ensemble

ICE5 is a group of electronic musicians, each playing with
a notebook and individual controllers. The target is to play
contemporary music, adapted or written for computermu-
sic ensembles.

In March 2012 a network concert between Graz and
Vilnius took place. One Kinect sensor was used in Vilnius
to track the skeleton of two musician. The tracking data
allowed each musician to play his virtual instrument with-
out handheld controllers. Additionally the Kinect video
stream showing the stage in Vilnius was sent to Graz and
projected on a canvas for the remote audience.

5.3. vertimas - übersetzen

The piece übersetzen - vertimas[3] for dancer, sound and
projection developed by the author features the Kinect
sensor to translate body movements on stage into sound
and turns the dancers body into a hyperinstrument. Ad-
ditionally, the depth video stream is used to gather the
outline of the dancer and project back onto her body in
realtime (Fig. 6).

Therefore an data-flow filtering and analysis library
has been developed to enable quickly adjustable methods
to translate tracking data into control data for sound or
visual content.

5IEM - Institute of Electronic Music and Acoustics, Graz ICE:
http://www.iaem.at/projekte/ice

Figure 6. stage setup vertimas - übersetzen

6. OUTLOOK

Using Kinect allows skeleton tracking without the need
of body mounted sensors or reflectors. This makes the
usually technoid flavor of an interactive performance in-
visible and creates some more mysteries about the human-
computer-interaction used. The different data streams of
the sensor give many possibilities to create a bridge be-
tween art installations and their visitors just by using a
single USB device.

The sensor device can be bought in almost every elec-
tronic shop around the world. Therefore easy replacement
during tours is guaranteed.

The cons of using Kinect include the limited range
and resolution, the possible interference of other infrared
light sources and the momentary dependance on non-open
source software for higher level functionality.

7. REFERENCES

[1] G. Fanelli, T. Weise, J. Gall, and L. V. Gool, “Real
time head pose estimation from consumer depth cam-
eras,” in 33rd Annual Symposium of the German Asso-
ciation for Pattern Recognition (DAGM’11), Septem-
ber 2011.

[2] M. Kronlachner. (2012, 08) Source code repository.
[Online]. Available: http://github.com/kronihias

[3] M. Kronlachner. (2012, 04) übersetzen - vertimas
- piece for dancer, sound and projection - trailer.
Vilnius, Lithuania. [Online]. Available: http://vimeo.
com/40919205

[4] M. Kronlachner, “The kinect distance sensor
as human-machine-interface in audio-visual art
projects,” Institute of Electronic Music and Acous-
tics, Graz, Tech. Rep., 2012.

[5] A. Maimone and H. Fuchs, “Reducing interference
between multiple structured light depth sensors using
motion,” IEEE Virtual Reality 2012, March 4-8, 2012.

[6] J. Rocha. (2012, 07) Skeltrack. [Online]. Available:
http://github.com/joaquimrocha/Skeltrack

http://www.iaem.at/projekte/ice
http://github.com/kronihias
http://vimeo.com/40919205
http://vimeo.com/40919205
http://github.com/joaquimrocha/Skeltrack

	1 Introduction
	2 Kinect specifications
	3 Accessing data streams
	3.1 libfreenect
	3.2 OpenNI/NITE
	3.3 Microsoft Kinect SDK

	4 PD externals
	4.1 Representation of depth data
	4.2 pix_freenect
	4.3 pix_openni

	5 Application examples
	5.1 General application examples
	5.1.1 Distance measurement
	5.1.2 Background subtraction
	5.1.3 User tracking
	5.1.4 Skeleton/hand tracking
	5.1.5 Head pose estimation

	5.2 ICE - IEM Computermusic Ensemble
	5.3 vertimas - übersetzen

	6 Outlook
	7 References

